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Metallic glasses are of commercial interest because of their magnetic and mechanical properties. 
Apart from their embrittlement under given testing conditions which has not yet been fully 
understood, the ribbons exhibit some inhomogeneities that lead to high failure probabilities for 
unnotched specimens. Two main types of quenched-in defects can be observed on the rupture 
surfaces. They are responsible for the specimens failure. For the first time, Weibull theory is 
successfully applied to the defects distribution in metallic glasses. Three distinct Weibull families 
of results are distinguished according to Weibull statistics. Two examples of commercial alloys 
are presented which show the interest of Weibull plots to control the ribbons quality and to 
follow the evolution of their properties under different conditions of use. 

1. Introduct ion  
Metallic glasses are of commercial interest because of 
their magnetic and mechanical properties. The main 
problem for their use is their embrittlement which has 
not yet been perfectly explained. Mechanical investi- 
gations have been performed by several authors [1-4] 
and have revealed that metallic glasses fracture arises 
(i) for their as-quenched state most of the time in a 
ductile mode, and (ii) in a brittle mode after anneal- 
ing or under given testing conditions. Some scatter 
observed in the measurements of the stress intensity 
factor K c and scanning electron microscope (SEM) 
investigations have revealed ribbons inhomogeneities 
due to the quenching conditions. As well as for ceramic 
materials, the existence of such brittle quenched-in 
defects increases the ribbons failure probability. Ten- 
sile tests on unnotched specimens have indeed resulted 
in a broad distribution of stress values. 

Commercial use of metallic glasses would however 
necessitate the control of the ribbons quality and a 
possible prediction of their future mechanical behav- 
iour under given conditions of use. Among the statisti- 
cal methods currently used to the characterization of 
materials, Weibull statistics has been applied success- 
fully to study flaws distribution in brittle materials 
such as ceramics [5-11]. Weibull theory is however 
based on several assumptions so that care must be 
taken before applying it to stress values distributions. 

It will be shown in this paper that Weibull statistics 
can be applied satisfactorily to metallic glasses although 
they are not actually brittle materials and that the 
observed defects can be classified into different Weibull 
families as presented by Scott and Gaddipati for 
other materials [12]. The interest of WeibuU plots for 
the control of the ribbons' quality and for the study of 
the evolution of their properties with different condi- 

tions of use will be shown and discussed for several 
commercial alloys. 

2. Materials and experimental 
techniques 

Kc-measurements have been carried out with notched 
specimens from several types of alloys which have 
been kindly provided by Allied Chemicals (New 
Jersey, USA) and Vacuumschmelze (Hanau, FRG). 
The results obtained with these commercial ribbons 
have been discussed in previous papers [3, 4, 13]. 
The composition for which the measurements were 
obtained in the broadest range (Allied Chemicals 
MHF 157) has been chosen. The corresponding 
ribbons were supposed to be the most inhomogeneous 
and consequently the most suitable for the application 
of Weibull statistics to the study of quenched-in defects. 

A ribbon has been cut in parts 90 cm long, each part 
being further divided into six specimens. Because the 
thickness of the ribbons varied from 47 to 57 #m, the 
location of each specimen within the ribbon width has 
been carefully noticed. Each specimen width has also 
been measured after mechanical polishing to avoid 
any side microcracks due to cutting conditions. 

The test fixtures used were identical to those for K~ 
measurements [3], except for unnecessary Teflon 
platelets. The mechanical tests have been carried out 
on a 1195 Instron testing machine and the fracture 
surfaces observed with an Hitachi scanning electron 
microscope. 

3. Investigation of the inhomogeneity 
of metallic glass ribbons 

3.1. Quenched-in defects 
Metallic glass ribbons fracture in their as-quenched 
state most of the time in plane stress conditions. These 
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Figure 1 Illustration of the two main defects types observed on rupture surfaces of metallic glass specimens: (a) Type A, (b) Type B. 

rupture conditions vary continuously until plane 
strain conditions when these materials are annealed, 
even under crystallization, or when they are loaded at 
very low temperatures or at high strain rates [4, 13, 
14]. A dispersion in the toughness values can neverthe- 
less be observed for some types of ribbons and has 
been linked to the presence of quenched-in defects [4, 
15-17]. From the observations of the rupture surfaces 
of each specimen, notched and unnotched, which had 
been mechanically tested, two main classes of defects 
have been distinguished from a shape criterion. They 
will be called Type A and Type B in the following and 
are illustrated in Fig. 1. 

3.1.1. Type A 
The defect shape is clearly defined, with a sharp transi- 
tion between the defect and the rest of the ribbon 
which will be called the matrix. X-ray investigations 
with a Siemens D501 diffractometer and transmission 
electron microscope observations of such defects have 
revealed that they form crystallized areas in a still 
amorphous matrix. These defects are consequently 
more brittle, in the sense of [13], than the matrix. The 
surface morphology of  these areas confirms this 
assumption when compared to the ductile (veins pat- 
tern) aspect of the matrix. 

3. 1.2. Type B 
The variation between what will be called "the defect 
centre" and the matrix is smooth and continuous. The 
sequence of the transition follows the typical mor- 
phology evolution observed when the rupture condi- 
tions change from brittle to ductile [13]: flat chevrons 

- rough chevrons - dense veins - less dense veins. 
Defect of Type B is currently observed near an anomaly 
of the surface as illustrated in Fig. lb. Such defects can 
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be due, for example, to a locally reduced rate of the 
quenching velocity. The observed void can be con- 
sidered as the trace of  an air bubble between the wheel 
surface and the solidifying ribbon. An insufficient 
local quenching rate results in a brittle area. When no 
void can be clearly defined, the orientation of the 
chevrons pattern indicates a surface defect as the rup- 
ture initiation point. 

3.2. Analogies with ceramics and brittle 
composites materials 

Defects of Types A and B are currently observed in 
metallic glass ribbons and SEM observations have 
revealed that they are most often responsible for the 
failure of unnotched specimens: they act as brittle 
areas embedded in a ductile amorphous matrix. The 
failure analysis has revealed some analogies with 
ceramics or brittle composites materials: 

(1) Metallic glass ribbons which would contain only 
defects of Type A can be represented as composites: 
ductile amorphous matrix - brittle areas. Inclusion 
of defects of Type A into an amorphous matrix fits 
fairly well with the standard definition of composites 
materials given by Davis and Bradstreet [18] except of 
course that the two components, matrix and defects, 
are not gathered intentionally in order to improve the 
performance of each component considered separately. 
This comparison, therefore very attractive, will be 
used in the following for stress distribution analysis 
and in another paper [14] for crack propagation inter- 
pretation. 

(2) The morphology of defects of Type B and the 
transition from the defect centre to the matrix is remi- 
niscent of fracture mirrors and typical fracture features 
that can be observed in case of  ceramics failure [19]. 



This comparison and particularly the role of  the 
propagation velocity and strain rate will be used and 
discussed in another forthcoming paper [14]. 

Particle distributions, for flaws in ceramics and for 
one component in composites, are currently charac- 
terized by Weibull plots [5-12]. The statistical approach 
developed by Weibull [20] has been proved to apply 
perfectly in the case of brittle materials such as 
ceramics. The results are used to predict the mechanical 
behaviour and the life time of  ceramic materials. Such 
a rapid characterization applied to the quality control 
and to the prediction of mechanical behaviour of 
metallic glass ribbons would be very useful for any 
commercial production of such materials. Following 
the two previous analogies, it will be supposed in a 
first approximation that the existing defects are small 
enough to consider the toughness as a constant. The 
rupture stress can be expressed in this case as follows 

Xc 
0-r ~--~ (~a)l/2 ( l )  

where o r is the rupture stress, K~ the stress intensity 
factor already introduced and, a, the crack length. 

3.3. Weibull theory 
The statistical method commonly used to describe the 
distribution of fracture stresses in brittle materials is 
that given by Weibull [20]. His theory is based upon 
several assumptions: 

(1) This first assumption is based on the weakest 
link of a chain. In Weibull analysis, it is assumed that 
fracture occurs when the fracture of  the weakest link 
occurs (as opposed to another possible concept imply- 
ing that fracture of one link causes redistribution of 
the load among the other links; the fracture then 
occurs when the overall system cannot resist the redis- 
tributed load). 

(2) The material is supposed statistically homogene- 
ous at a sufficiently large scale length. The probability 
to find a critical flaw in a given volume element is the 
same as for the overall volume. 

(3) A stressed solid can fracture, due to any of  a 
series of independent and mutually exclusive mechan- 
isms or causes, each having its own probability of 
fracture. 

From these assumptions, Weibull has considered the 
failure probability of a volume Vof  material, in simple 
tension, under a stress 0, to be given by the following 
reJationship 

Pf(a) ~ 1 - exp - V  a - ~  (2) 
\ q0 / A 

where a 0 is a scale parameter, m is the Weibull modulus 
and 0-, is the location parameter i.e. the stress at which 
there is zero probability of  failure, ou is often taken 
equal to zero to obtain reliable safety factors for 
design [2'!]. 

For  N identical specimens, the failure probability of  
the ith one has been set by Weibull to be 

N + I  
p . ( o )  = (3) 

N + l - i  

or  

1 

(4) 

Equation 3 combined with Equation 2 for 0-~ = 0 
results in: 

I § 
Log Log N +  1 - i -- mLog0-i  

- m Log o0 + Log V (5) 

The parameter m is obtained by plotting the cal- 
culated expressions [Log Log (N  + 1/N + 1 - i)] 
against the logarithm values of the rupture stress. The 
N specimens are ordered with increasing stress value 
so that the Nth specimen corresponds to the highest 
measured stress value. The slope of  the resulting 
straight line is the Weibull modulus of the distribution. 

Several points have however to be verified before 
assuming that a distribution follows the Weibull 
statistics and before using the Weibull plots for the 
material characterization: 

(i) there must be a linear relationship between the 
[Log L o g ( N  + l / N +  1 - i)] and the (Log 0-i) 
values. The Weibull statistics however, take into 
account only one type of  flaw whereas they can be of 
several types depending on their composition or their 
location within the specimen (surface and volume 
flaws for example). A non-linear distribution can 
consequently also be due to the simultaneous presence 
of several types of  flaws [10, 12]. 

(ii) The number of tested specimens must be statis- 
tically sufficient to obtain meaningful results by Wei- 
bull analysis. The required numbers N corresponding 
to several m values have been calculated by Jayatilaka 
and Trustrum [5]. 

(iii) The volume effect (assumption 2 above) of the 
Weibull theory must be verified. Let Pf be the failure 
probability of flaw at a stress a~ in volume V1 and 0-2 
in volume V2. Assumption (2) leads to write Equation 
5 whatever the flaw i as follows 

o-2/ V1 (6) 

or 

mLog0- j  + Log V1 = m L o g a 2  + Log V2 (7) 

This equation relates in fact the volume effect. 
The plots [Log Log (N  + 1/N + 1 - i) against 

(m Log oj + Log Vj)] must be identical f o r j  equal to 
1 and 2. This third check is necessary because the 
statistical homogeneity of the flaws distribution is not 
obvious for every material. 

4. Results obtained w i th  a Co-based 
al loy 

4.1. Different types of defects 
For the application of  Weibull statistics to metallic 
glasses, the most inhomogeneous alloy has been 
chosen among the ribbons for which Kc-measure- 
ments had been previously performed. This alloy was 
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Figure 2 Weibull plot calculated for 71 specimens of  a commercial 
Co-based ribbon. The symbols assigned to each point correspond to 
the defects that were responsible for the specimens failure: (o)  
Veins, ( I ,  [3) Type A, (A) Type B-I and (zx) Type B-II. w ~- 3.7 to 
4.9ram; e -~ 47 to 57pro; gauge length = 50ram. 

supposed to contaifi a lot of quenched-in defects and 
consequently give rise to a well defined Weibull distri- 
bution. Seventy-one specimens have been tested which 
is a sufficient number for a reliable statistical analysis 
[5]. The Weibull plot is represented in Fig. 2. The 
distribution is not linear but the calculated slope of the 
straight line, that can however be drawn to fit all the 
data, is 4.5. Such skewed linear distribution recalls the 
Weibull plots obtained for a combination of a few 
flaw families, which will be called Weibull families 
[121. 

Careful SEM observations of  the specimen rupture 
surfaces have revealed five types of failure conditions 
which have been represented with a different symbol 
in Fig. 2. The defects associated with the failure are of 
the two types previously presented, Types A and B. 
These two types have each been divided into two other 
types corresponding to different surface morphologies. 
The four resulting defect types are illugtrated in Fig. 3. 
Types B-I and B-II only differ by the size of the surface 
anomaly at the failure origin. This distinction will be 
used in the following to classify the specimens accord- 
ing to distinct defect sizes. Types A-I and A-I! are 
similar enough and will not be distinguished in the 
following. They only differ by the aspect of the brittle 
area that forms the defect. The specimens for which no 
brittle areas or defects could be observed on the frac- 
ture surfaces have been classified in a 5th type. This 
5th type will be called "veins", because the rupture 
surfaces for these specimens are entirely covered with 
veins patterns which is the characteristic morphology 
for metallic glass ductile rupture [3, 22]. The fracture 
has been in this case most of the time initiated at the 
specimen sides as was indicated by the presence of 
numerous shear lines. 

These first results require some comments: 

(1) The classification in five types of failure condi- 
tions goes along with increasing magnitude of the 
stress values: Type B-I is for example associated with 
the lowest ~r r values. 

(2) Weibull plots calculated for each of the five types 

T A B L E  I Classification of the different types of  defects as a 
function of the specimen location within the ribbon width 

Thickness, e Type 

(#m) B-I B-II A Veins 

55 4 5 1 2 
56 7 1 2 2 
57 1 4 7 0 
53 l 5 5 1 
51 3 2 1 4 
47 2 2 0 8 

separately can however not be perfectly fitted by a 
straight line. 

(3) The five different types seem to be distributed in 
correlation with the specimen location within the 
ribbon width. Table I summarizes the number of 
specimens for which the different types of defects have 
been observed as a function of sample thickness, e, 
ordered from left to right side of the initial ribbon (top 
to bot tom of Table I). The defects types are ordered 
with increasing magnitude of  stress values (left to right 
side of Table I). 

For the thinner specimens, e = 47 and 51 #m, the 
main type is veins. Good quenching conditions have 
probably been favoured by the weaker thickness. The 
middle specimens, e = 57 and 53 #m, mainly contain 
Types A and B-II. Large defects such as Type B-I seem 
to appear preferentially in thicker side parts of the 
ribbon, e -- 55 and 56 #m, where the formation of air 
bubbles between the wheel and the substrate has been 
probably more likely to occur. 

(4) For a given type, no influence of the specimen 
location within the ribbon width is however noticeable 
on the stress distribution. Fig. 4 represents the Weibull 
plot calculated with all the specimens for which defects 
of  Type B have been observed. The symbols are 
associated to the average thickness of the correspond- 
ing ribbon part Where the specimen has been cut. No 
influence of the specimen location can be noticed. 

From the skewed distribution of Fig. 2 it can be 
supposed that the specimens could be divided into 
several Weibull families for which the associated 
Weibull plot would be linear. Comment (1) reveals 
that this classification, if it is possible, should follow 
the order of stress values. Comments (2) and (4) show 
however that these Weibull families are different from 
the defects types into which the specimens have until 
now been classified. The morphological criterion 
alone is consequently not satisfying. 

4.2. Vo lume effect and possible errors 
In order to verify the validity of  assumption (2) in 
Weibull theory, a set of 34 specimens similar to the 71 
previous ones has been prepared. They have however 
been tested with a gauge length of 30 cm instead of 
50 cm. The Weibull plot calculated for the 34 specimens 
could be fitted with a straight line with same slope 4.5, 
but shift towards higher stresses. The common m 
value has been used to calculate the two plots 
[Log L o g ( N  + 1 / N  + 1 - i )  against (Log V +  
m Log ar)] for the two sets of specimens. The results 
are represented in Fig. 5. The two plots are identical 
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Figure 3 Illustration of the four defects types which have been observed for the Co-based alloy. (a) and (b) are of Type A and (c) and (d) 
are of Type B. (a): A-I, (b): A-II, (c): B-I, (d): B-If. 

and the slope of  the resulting straight line is about 1.0 
as should be expected by Equation 6. 

Although the assumption about the volume effect 
appears to be verified by the results in Fig. 5, possible 
errors due to size differences between specimens have 
been analyzed: 

(1) Even in quite good quenching conditions, metal- 
lic glass ribbons are not perfectly homogeneous in 
thickness, particularly within the ribbon width. Fig. 6 
reports several series of thickness measurements 
which have been carried out on the ribbon with a 

comparator of  0.5 micrometer precision. Each point 
represents the average value of ten measurements per- 
formed in a 1 cm long ribbon part but for the same 
location within the width. The measurements along 
the width are distant from about 1 ram. The different 
symbols in the figure correspond to the different 1 cm 
long parts randomly located along the ribbon length. 
From these results an average thickness value has been 
assigned to each specimen in relation with the ribbon 
part where it has been cut out. The two extreme 
values, 47 and 57/~m, correspond to a volume ratio 
VI/V2 = 1.213. The resulting relative difference in 
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Figure 4 Weibull plot calculated for the specimens for which defects 
of Type B have been observed. The symbols assigned to each point 
correspond to the thickness of the ribbon part where the specimen 
has been cut out. w = 3.7 to 4.9 mm; gauge length 50 mm. 

stress values, calculated with Equation 6, would be 
4.4% which is far less than the observed scatter of the 
Weibull distribution. 

(2) Differences in width between specimens have 
also been observed. It was indeed difficult to prepare 
specimens with exactly the same geometry. The two 
extreme reported values, 3700 and 4900 #m, correspond 
to a volume ratio V1/V2 = 1.32 which would result 
in a stress difference of 6.4%, also smaller than the 
distribution scatter. 

(3) The combined differences in thickness and width 
have resulted in calculated specimen volumes ranging 
between 9.5 x 101~ and 1.30 x 10 It/.tm 3. These two 
extreme values correspond to a volume ratio V1/V2 = 
1.37 and a stress difference of 7.2% which is also less 
than the scatter observed in the specimen stress values. 

(4) These calculated specimen volumes are however 
randomly distributed through the Weibull plot in 
Fig. 2. 

(5) The observed shift in stress values when the 
gauge length is changed from 50 to 30cm is about 
twice the maximum scatter which could be attributed 
to size differences between the specimens. 

From these five results, it may be concluded that the 
scatter observed in stress values is to be attributed to 
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Figure 5 Verification of the volume effect. Two gauge lengths have 
been used which correspond to two specimens volumes. (o) 50mm; 
( i )  30mm. The common straight line with a slope of about 1.0 is 
in agreement with Equation 6. e = 47 to 57 #m, w = 3.7 to 4.9 mm. 
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Figure 6 Thickness measurements performed along the ribbon 
width for several 1 cm long parts randomly located in the ribbon 
length. The symbols assigned to each point correspond to a different 
1 cm long ribbon part. 

a Weibull distribution of flaws and not to measure- 
ment errors or size differences between specimens. 

4 . 3 .  T h r e e  W e i b u l l  f a m i l i e s  
At this stage, it is obvious that there is not straightfor- 
ward correspondence between the Weibull families 
into which the specimens could be classified and the 
defects types. In a first approximation, Kc has been 
considered as a constant in Equation 1 because the 
defects have been supposed to lead to small cracks. To 
verify if this hypothesis was correct, each defect length 
has been measured. In the case of Type B defects, the 
defect area has been considered to be the total area 
covered with chevrons patterns. In the case of Type A, 
the defects size is clearly defined. The defect length 
measured with such a criterion is however overesti- 
mated and would better correspond to the crack 
propagation before catastrophic rupture has occurred 
[3, 15]. 

First of all, these defect lengths have been used as 
crack lengths to estimate the specimens Kc values. The 
results are represented in Fig. 7 against the defects 
length. 
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Figure 7 Stress intensity factors calculated for each tested specimen. 
The symbols assigned to each point correspond to the defects types 
that has been observed: ( I ,  o) Type A, (rn) Type B-I and (O) Type 
B-II. e = 47 to 57#m; w = 3.7 to 4.9ram. 
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Figure 8 Weibull plots calculated for the defects lengths which have 
been measured on the specimens rupture surfaces. The symbols 
correspond to the defects types. (El, II) Type A, (O) Type B-II, (O) 
Type B-I. e = 47 to 57#m; w = 3.7 to 4 .9mm. 

Further on, the defect lengths have been classified 
in increasing order to calculate the Weibull plot which 
is represented in Fig. 8. Equation 1 can indeed be 
written as: Log a = 2 Log Ko - 2 Log ~r" The plot 
of [Log L o g ( N  + 1/N + 1 - i)] against (Loga)  
instead of (Log a,) has allowed to clearly define three 
types of failure conditions, which this time correspond 
to different crack propagation before rupture. The 
Weibull plots calculated for each of these families 
separately are represented in Fig. 9. The distributions 
are now linear with respective slopes of 3, 4 and 6. 

These results allow several comments: 

(1) The Weibull families defined in Figs 8 and 9 
partly correspond to three types of defects: Type A, 
Type B-I and Type B-II. 

(2) As it would have been expected, the longest 
defects are of Type B-I and their Weibull plot exhibits 
the minimum slope in Fig. 9 which indicates that the 
presence of such defects will lead to high failure 
probability for the specimens. The smallest defects are 
mainly of Type A and correspond to the maximum 
slope. The interpretation of crack propagation from 
these defects needs further developments and will be 
discussed in another paper in correlation with the 
overall embrittlement of metallic glasses. 
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Figure I0 Weibull plots obtained for an Fe-based alloy of  commercial 
origin. The symbols assigned to each point correspond to the differ- 
ent testing conditions. ( 0 )  as-quenched, 77 K ($)  as-quenched, RT 
(rn) annealed, 500K, 3h,  RT. w = 2.9ram; e = 40#m; gauge 
length = 10mm. 

(3) For the middle family (0.06 < a/w < 0.25), two 
curves (Kc against a/w) can be drawn corresponding to 
the two defects types that can be observed, B-I and 
B-II. These two toughness levels indicate two ways for 
crack propagation. Defects of Type B-I lead to lower 
resistance to crack propagation for the specimens and 
consequently to higher failure probability. 

(4) Within one of these three families, Weibull 
statistics can be correctly used to characterize the 
flaws distribution. 

5. D i s c u s s i o n  a n d  c o n c l u s i o n  
From the results presented in this paper, several con- 
clusions can be made: 

(1) Weibull statistics applies satisfactorily to the 
rupture of metallic glass ribbons although they are not 
actually brittle materials. Care must however be taken 
to establish the Weibull plots: the number of tested 
specimens must be sufficiently large for a meaningful 
statistical analysis and size differences between speci- 
mens must be as reduced as possible. 

(2) The degree of linearity of the Weibull plots is a 
good indication of the homogeneity in quenching con- 
ditions all over the ribbon. SEM observations of 
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Figure 9 Weibull plots calculated for each range of  defects length 
separately. The three linear distributions correspond to three Weibull 
families. (e ,  o)  Type A, (O)  Type B-II, ([3) Type B-I. e = 47 to 
57#m; w = 3.7 to 4 .9mm.  
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Figure 11 Weibull plots obtained for a Ni-based alloy of commercial 
origin. The symbols correspond to different testing conditions. 
As-quenched (o)  RT and (O) 77 K. Annealed 573 K 3 h (El) R T  and 
( I )  77 K. e = 32 #m; w -~ 5 mm; gauge length = 60 mm. 
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Figure 12 Weibull plot obtained for another ribbon from the same 
Ni-based alloy as Fig. 11. w _~ 8.5mm; e = 32/~m; gauge length = 
50 mm. As-quenched, RT. 

several specimens can confirm the presence of 
quenched-in defects and explain their nature and 
origins. Weibull plots can consequently be used to 
control the ribbons quality and its improvement with 
better quenching conditions. The produced ribbons 
must be free from large defects of Type B-I which 
would lead to high failure probability of the specimens. 

(3) In the case of ribbons with mainly one Type of 
defects and corresponding to one Weibull family, 
Weibull plots can be used to follow the evolution of 
the ribbons properties under different conditions of 
use. As an example, Fig. 10 represents Weibull plots 
obtained for Fe-based specimens of identical geometry 
but tested under different conditions at room tempera- 
ture (as-quenched and as-annealed) and at liquid 
nitrogen temperature (as-quenched). The scatter in K~ 
valties was very small for this alloy which had been 
considered as quite homogeneous [3]. The quenched-in 
defects which have however been observed on the 
rupture surfaces of the unnotched specimens were of 
Type B-I and B-II. The ribbons were 2.9 mm broad 
and homogeneous in thickness. Consequently the 
specimen width was the same as the ribbon width and 
only the logarithm of the force values have been calcu- 
lated instead of the stress values. The skewed distribu- 
tion could be explained by the presence of large defects 
of Type B-I. The ribbon quality could however not be 
improved because of its commercial origin. The inter- 
pretation of the observed evolution in the defects 
distribution has been discussed elsewhere [15-17]. 

(4) Fig. 11 presents another example of the use of 
Weibull plots to study the evolution of metallic glasses 
properties. The ribbon used, a Ni-based alloy of com- 
mercial origin, contained principally .defects of Type 
A. The distributions are quite linear with a higher 
slope, except for the shift plot in black squares corre- 
sponding to large defects of Type B-I. Their existence 
has been discussed in another paper in relation to the 
overall embrittlement of the .ribbon at 77 K [17]. 

Another ribbon of the same alloy and same com- 
mercial origin has also been studied. The Weibull plot 
is represented in Fig. 12. The distribution is skewed 
and the slope of its upper part is about 8.9. The defects 
which could be observed on the rupture surfaces were 

1 8 0 8  

this time of both Types A and B-I. The comparison of 
Figs 11 and 12, for the same alloy but two different 
ribbons, show the interest of Weibull plots to control 
metallic glass ribbons quality. 

In summaryl it must thus be concluded that the 
Weibull plots can be successfully applied to com- 
mercial metallic glasses to control the ribbons quality, 
if care is taken for specimens preparation and size 
measurements. 
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